Biresin[®] CR84 mit Biresin[®] S15 Härter Thixotropiertes Compositeharz-System

Produktbeschreibung

Das Harzsystem Biresin® CR84 Harz (A) mit Biresin® S15 Härter (B) wurde insbesondere für die Produktion von Sport- und Freizeitartikeln entwickelt.

Anwendungsbereiche

Für die Großserienherstellung von Sport- und Freizeitartikeln wie Skis, Snowboards, Skateboards, Wakeboards, Surfboards usw. Insbesondere für Herstellungsprozesse bei denen eine Vielzahl an unterschiedlichsten Materialien wie Glasfasern, Holz, Metal, Kunststoff usw. zum Einsatz kommt.

Merkmale / Vorteile

- Thixotropierte A-Komponente gewährleistet eine optimale Mischviskosität kombiniert mit einer guten Durchtränkung und einer geringen Auslaufneigung
- Glasübergangstemperaturen von mehr als 90°C in Abhängigkeit von den Härtungsbedingungen
- Gute Imprägniereigenschaften bei trockenen Faserwerkstoffen und besonders gute Durchhärtung auch bei Raumtemperatur

Physikalische Daten	Harz (A)	Härter (B)	
Einzelkomponenten	Biresin® CR84	Biresin® S15	
Mischungsverhältnis in Gewichtsteilen	100	15	
Mischungsverhältnis in Volumteilen	100	18	
Farbe	transluzent	bernsteinfarben	
Viskosität, 25°C mPa.s	~4.000	~90	
Dichte, 25°C g/ml	1,15	0,99	
		Mischung	
Topfzeit, 100 g, RT, ca. Werte min		~60	
Mischviskosität, 25°C, ca. Werte mPa.s		~1.200	

Verarbeitung

- Um eine komplette Vernetzung und damit die bestmögliche Performance des Systems zu garantieren, muss das Mischungsverhältnis zwingend eingehalten werden
- Die endgültigen mechanischen und thermischen Kennwerte sind von den verwendeten Temperzyklen abhängig.
- Zur sofortigen Reinigung von Pinseln und Arbeitsgeräten eignet sich Sika Reinigungsmittel 5.
- Zusätzliche Informationen sind in den "Verarbeitungsrichtlinien Composite-Harze" enthalten.

Mechanische Kennwerte der Reinharzproben (ca. Werte)							
Biresin® CR84 Harz (A)	mit Härter (B)		Biresin® S15				
Härtungsbedingungen		emperatur ufheizrate	10 min / 80°C isotherm	8 h / 80°C 10°C / h			
Zugfestigkeit	ISO 527	MPa	~90	~90			
Zug-E-Modul	ISO 527	MPa	~3.100	~3.000			
Zugdehnung	ISO 527	%	~5,4	~4,6			
Biegefestigkeit	ISO 178	MPa	~130	~130			
Biege-E-Modul	ISO 178	MPa	~3.300	~3.200			
Druckfestigkeit	ISO 604	MPa	~110	~110			
Dichte	ISO 1183	g/cm³	~1,19	~1,19			
Shore-Härte	ISO 868	-	~D 87	~D 87			
Schlagzähigkeit	ISO 179	kJ/m²	~34	~36			

Thermische Kennwerte der Reinharzproben (ca. Werte)					
Biresin® CR84 Harz (A)	mit Härter (B) Bires	sin® S15		
Härtungsbedingungen	Zeit/Tempera Aufheizr		8 h / 80°C 10°C / h		
Wärmeformbeständigkeit	ISO 78A °C	~83	~91		
	ISO 78B °C	~89	~96		
	ISO 78C °C	~71	~82		
Glasübergangstemperatur	ISO 11357 °C	~92	~97		

Verpackung (netto gewicht, kg)			
Biresin® CR84 Harz (A)	1.000	200	10
Biresin® S15 Härter (B)	200		6 x 0,35

Temperung

Der geeignete Temperprozess und die damit erreichbaren mechanischen und thermischen Kennwerte hängen von verschiedenen Faktoren wie z.B. Laminatstärke, Faservolumengehalt, Reaktivität des Harzsystems etc. ab. Ein standardmäßiger Temperprozess kann wie folgt aussehen:

- Aufheizrate von ca. 0,2°C/Minute bis etwa 10°C unter dem gewünschten Tg.
- Anschließendes Halten der Temperatur über einen Zeitraum von 2 Stunden bis 12 Stunden.
- Abkühlen mit einer Rate von ca. 0,5°C/Minute

Dieser Temperprozess sollte entsprechend technischer und wirtschaftlicher Anforderungen angepasst werden. Für die Ermittlung der mechanischen Kennwerte wurde ein SikaAxson Standardprozess verwendet um das komplette Tg-Potential des jeweiligen Systems zu erreichen.

Lagerung

- In temperierten Räumen (18 25°C) und ungeöffneten Originalgebinden beträgt die Lagerfähigkeit von Biresin® CR84 Harz (A) mindestens 24 Monate und von Härter (B) Biresin® S15 mindestens 12 Monate.
- Durch ungünstige Lagerbedingungen kristallisiertes Harz (A) ist durch vorsichtiges Erwärmen auf mindestens 60°C wieder zu verflüssigen.
- Angebrochene Gebinde sind stets sofort wieder dicht zu verschließen und baldmöglichst zu verarbeiten.

Gefahrenhinweise

Informationen zum sicheren Umgang von chemischen Produkten, sowie die wesentlichen physikalischen, sicherheitstechnischen, toxikologischen und ökologischen Daten sind den aktuellen Sicherheitsdatenblättern zu entnehmen. Die einschlägigen Vorschriften, wie z.B. die Gefahrstoffverordnung sind zu beachten. Weitere Hinweise und Infodatenblätter zur Produktsicherheit und Entsorgung finden Sie im Internet unter www.sika.de. Hautkontakt mit Epoxidharzen kann zu Allergien führen! Beim Umgang mit Epoxidharzen ist der direkte Hautkontakt unbedingt zu vermeiden! Zur Auswahl einer geeigneten Schutzausrüstung stellen wir Ihnen unter www.sika de. unsere Infodatenblätter 7510 "Allgemeine Hinweise zum Arbeitsschutz" und 7511 "Allgemeine Hinweise zum Tragen von Schutzhandschuhen" zur Verfügung.

Entsorgung

Nicht ausgehärtete Produkte sind in der Regel besonders überwachungsbedürftige Abfälle und müssen ordnungsgemäß entsorgt werden. Ausgehärtetes Material kann nach Absprache mit der jeweils zuständigen Behörde oder Deponie als Haus- / Gewerbeabfall entsorgt werden.

Auskunftspflichtig für die ordnungsgemäße Entsorgung sind die örtlichen Behörden, wie z.B. Landratsamt, Umweltschutzamt oder Gewerbeaufsichtsamt.

Datenbasis

Alle technischen Daten, Maße und Angaben in diesem Datenblatt beruhen auf Labortests. Tatsächlich gemessene Daten können in der Praxis aufgrund von Umständen außerhalb unseres Einflussbereiches abweichen.

Rechtshinweise

Die vorstehenden Angaben, insbesondere die Vorschläge für Verarbeitung und Verwendung unserer Produkte, beruhen auf unseren Kenntnissen und Erfahrungen im Normalfall, vorausgesetzt die Produkte wurden sachgerecht gelagert und angewandt. Wegen der unterschiedlichen Materialien, Untergründen und abweichenden Arbeitsbedingungen kann eine Gewährleistung eines Arbeitsergebnisses oder eine Haftung, aus welchem Rechtsverhältnis auch immer, weder aus diesen Hinweisen, noch aus einer mündlichen Beratung begründet werden, es sei denn, dass uns insoweit Vorsatz oder grobe Fahrlässigkeit zur Last fällt. Hierbei hat der Anwender nachzuweisen, dass er schriftlich alle Kenntnisse, die zur sachgemäßen und erfolgversprechenden Beurteilung durch Sika erforderlich sind, Sika rechtzeitig und vollständig übermittelt hat. Der Anwender hat die Produkte auf ihre Eignung für den vorgesehenen Anwendungszweck zu prüfen. Änderungen der Produktspezifikationen bleiben vorbehalten. Schutzrechte Dritter sind zu beachten. Im übrigen gelten unsere jeweiligen Verkaufs- und Lieferbedingungen. Es gilt das jeweils neueste Produktdatenblatt, das von uns angefordert werden sollte.

Weitere Informationen:

Sika Deutschland GmbH

Niederlassung Bad Urach
Stuttgarter Str. 139
D - 72574 Bad Urach
Deutschland

Tel: +49 (0) 7125 940 492
+49 (0) 7125 940 401
tooling@de.sika.com
www.sikaadvancedresins.de

